RoaDyn® P/S: Multi-Component Measuring Hubs

For Tire Characteristics Measurement

RoaDyn P530: 5-/6-Component Measuring Hub for Car Tires

Technical Data		Туре 9295В
Measuring range F _x	kN	–20 20
F _y	kN	–20 20
Fz	kN	0 30
M _x	kN⋅m	-7,5 7,5
My	kN⋅m	-3 3
Mz	kN⋅m	-1,3 1,3
Rim sizes	Inch	≥13
Data sheet	No.	9295B_000-991

Description

Measurement of wheel forces and moments for cars on tire test stands, measurement of non-uniformities, vibrations and determining tire characteristics.

RoaDyn S5ST: 5-/6-Component Measuring Hub for Heavy Cars and Light Truck Tires

Technical Data		Type 9289A253
Measuring range F _x	kN	-60 60
F _y	kN	-40 40
F _z	kN	0 60
M _x	kN⋅m	-29 29
My	kN∙m	–15 15
Mz	kN∙m	- 9 9
Rim sizes	Inch	≥16
Data sheet	No.	9289A 000-986

Description

Measurement of wheel forces and moments for heavy cars and light trucks on tire test stands. Measurement and identification of tire characteristics and specifications. Also available as piezo-electric type.

RoaDyn S5MT: 5-/6-Component Measuring Hub for Light and Medium Weight Truck Tires

Technical Data		Type 9289A263
Measuring range F _x	kN	–100 100
F _y	kN	–50 50
F _z	kN	0 100
M _x	kN⋅m	-40 40
M_{y}	kN⋅m	-30 30
M_z	kN⋅m	–15 15
Rim sizes	Inch	≥17,5
Data sheet	No.	9289A_000-987

Description

Measurement of wheel forces and moments for light and medium weight trucks on tire test stands. Measurement and identification of tire characteristics and specifications. Also available as piezoelectric type.

18 www.kistler.com

RoaDyn® P530

Measuring Hub for Tire Test Stands

The RoaDyn P530 measuring hub is the ideal instrument for measuring the wheel force and torque on tire test stands in the laboratory as well as on mobile test vehicles. The system measures the orthogonal forces F_x , F_y , F_z and torques M_x , M_v, M_z. It is uniquely suited for the measurement of tire nonuniformity, tire vibration, and tire characteristics.

- Maximum measuring accuracy during high dynamic testing
- Fits to wheels with rim size 13 inches or larger; smaller rims may be mounted with a compatible adapter
- Fits to standard rims with interchangeable adapters; custom rims not required
- Bearings with oil lubrication and cooling for rotational speeds up to 3 000 min⁻¹ at full load
- Alternative grease lubrication for rotational speeds up to 2 000 min⁻¹ for short running periods available upon request

Description

The RoaDyn P530 measuring hub is a robust, high-precision instrument equipped with quartz sensors. Four 3-component force sensors are mounted with high preload between two plates. Inside, a rotating shaft with bearings holds the mounted wheel in place.

The path-independent measurement of the force components naturally result in a minimum crosstalk between the components and a resonant frequency of the complete measuring system. The end of the shaft is lead through the rear side of the dynamometer and is prepared for connecting a brake or driving device. It provides an oil circulation for lubrication and cooling of the bearings, resulting in perpetual heat conditions even when high loads are applied.

The mechanical interfaces for mounting on the tire test stand allow front or rear side mounting.

The dynamometer is protected against corrosion, splash water and dust. The measured signals are transmitted to the charge amplifier (with summing amplifier) via a robust high-insulation cable.

Type 9295B...

Application

- · Measurement of force and moment resulting from tire non-uniformities, even at high speeds (non-uniformity
- Quasistatic, dynamic and highly dynamic measurements of tire characteristics
- Tire vibration measurement
- Universal measuring tool for laboratory tire test stands in the fields of research, development and quality control

Technical Data

Measuring range	F _x , F _y	kN	-20 20
	Fz	kN	0 30
	M _x	kN⋅m	-7,86 7,86
	My	kN⋅m	-3,00 3,00
	Mz	kN⋅m	-1,24 1,24
Overload	F _x , F _y	kN	-30 30
	F _z	kN	0 42
Calibrated range	F _x high	kN	0 –20
	F _x low	kN	0 –2
	F _y high	kN	0 20
	F _y low	kN	0 2
	F _z high	kN	0 30
	F _x low	kN	0 3
Force application point	R (tire radius)	mm	300
Force calibration	e (wheel offset)	mm	38
	e _D (offset)	mm	62
Active cell distance		mm	160
Nominal sensitivity	F _x	pC/N	-7,7
	F _y	pC/N	-3,9
	F _z	pC/N	-7,7
Linearity	F _x , F _y , F _z	%FSO	≤±0,5
Crosstalk 1)	$F_x \rightarrow F_y$, F_z	%	≤±2 (≤±1)
	$F_y \rightarrow F_x$, F_z	%	≤±2 (≤±1)
	$F_z \rightarrow F_x$, F_y	%	≤±2 (≤±1)
Natural frequency			
freely suspended	f ₀ (x, z)	Hz	≈2 400
Rotational speed			
grease lubrication		1/min	≤2 000
oil lubrication		1/min	≤3 000
Operating temp. range		°C	-20 80
Temperature error	y ²⁾	N/°C	≈15
	x, z	N/°C	≈5
Insulation resistance		Ω	>10 ¹³
Ground insulation		Ω	>108
Degree of protection		EN60529	IP65
Output flange socket			Fischer, 9 pin
(ground-insulated)			neg.
Dimensions			see page 3
Weight (approx.)		kg	70

Requirements for Oil Lubrication

Supply pipe		number	2
Pipe diameter	di/da	mm	6/8
Oil pressure 3)	р	bar	≤0,5
Flow/per supply each	V	l/min	0,5 1
Flow/total	V	l/min	1 2
Kinematic viscosity	ν	mm²/s	20 25
Return pipe		number	2
Pipe diameter	di/da	mm	8/12
Oil pressure	р	bar	pressure-free
· · · · · · · · · · · · · · · · · · ·			

¹⁾ typical values in brackets

²⁾ after warm-up 3) pressure limiting valve recommended

Dimensions

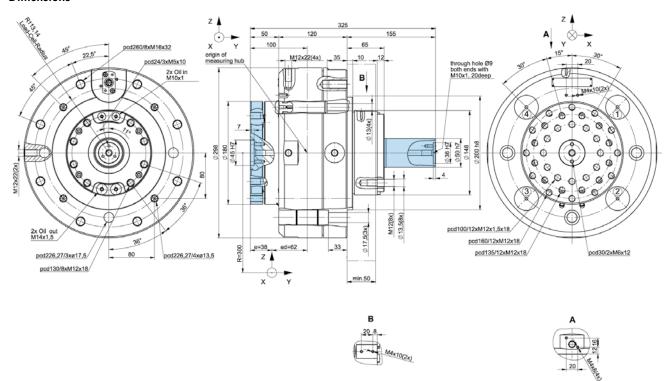


Fig. 1: Dimensions of RoaDyn® P530, Type 9295B1, oil lubricated (lubrication system not included); rotating parts are highlighted in blue

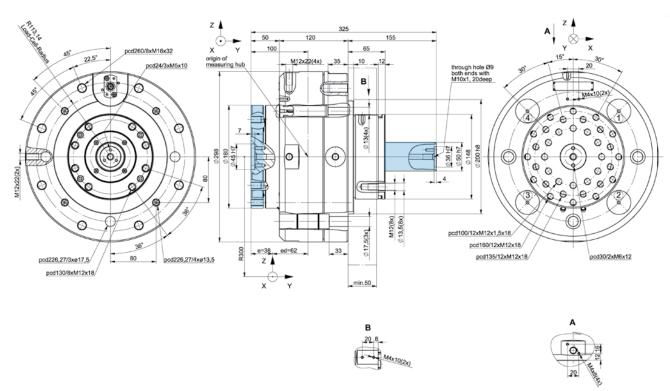


Fig. 2: Dimensions of RoaDyn® P530, Type 9295B2, grease lubricated; rotating parts are highlighted in blue

Page 3/6

Test Stand Connection

Measuring hubs of Type 9295B1 and Type 9295B2 can be connected at the front side using 3xM16 or 4xM12 screws, or at the rear side using 8xM16 screws (scope of delivery). Fig. 3 shows the corresponding geometry. When using the 90° angle plug, an additional slot must be cut (width 25 mm, depth 25 mm, length >80 mm).

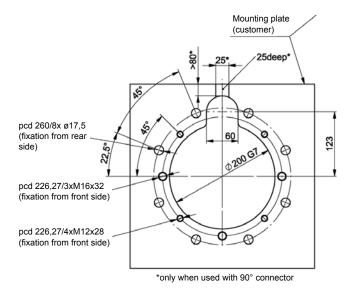


Fig. 3: Test stand connection - dimensions

Mounting the Test Object

The test object is mounted on the front side of the shaft, either directly or by using an appropriate adapter. The designated hole patterns are at 100, 135, and 160 mm on the pitch circle diameters.

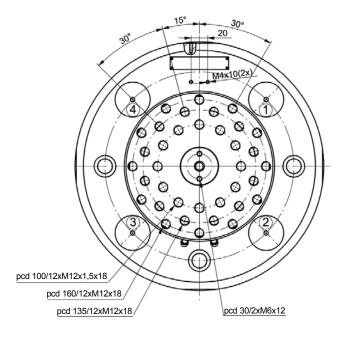


Fig. 4: Test object installation - dimensions

Wheel Centering

If the test object is mounted directly on the shaft, it is possible to mount an additional centering pin on the front side of the shaft (Ø45 H7, 2xM6). This configuration may also be used for centering an intermediate adapter (see Fig. 5).

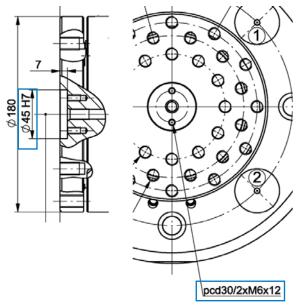


Fig. 5: Wheel centering - dimensions

Mounting a Brake

For mounting a brake, the rear side of the measuring hub provides 8xM12 on a pitch circle of 130 mm (see Fig. 6).

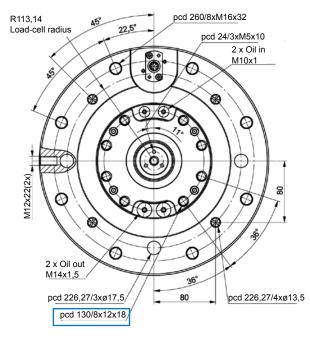


Fig. 6: Brake installation - dimensions

Other Mechanical Interfaces

The shaft provides a through-going bore (M10x1 at the ends), which can be used for feedthrough of cables or compessed air (see Fig. 2). It is possible to mount a rotary encoder or a slip ring for compressed air or additional signals on the rear side of the shaft (centering ø36 H7, 3xM5 pcd 24 mm).

Measuring Chain

Measuring hub RoaDyn P530 Type 9295B	Connection cable (straight plug) Type 1677A5 (I = 5 m) Type 1677Asp (I = 1 20 m)	Extension cable Type 1678A5 (I = 5 m) Type 1678A10 (I = 10 m) Type 1677Asp (I = 1 20 m)	Charge amplifier Type 5070A1.	Customer data acquisition
	or Connection cable (90° plug) Type 1679A5 (I = 5 m) Type 1679Asp (I = 1 20 m)			not included

Included Accessories	Type/Art. No.	Ordering Key		
 Ring bolts, 2 pcs. M12 	65013149			Type 9295B
 Oil connection adapter, 2 pcs M10x1 	65003244*			^
 Oil connection adapter, 2 pcs M14x1,5 	65003245*			
 Sealing ring, 2 pcs. 10,2/15,9x1 	65007701*	RoaDyn P530, oil lubricated	1	
 Sealing ring, 2 pcs. 14,5/17,9x1,5 	65007703*	RoaDyn P530, grease lubricated	2	
 Hoisting block, 1 pc 	55088555			
 ISK screw for hoisting block, 1 pc M12x45 	65012849			
 Fixing screw, 8 pcs M16x70 	65012819	Ordering Example		
• Fixing screw, 4 pcs M12x45	65012789			Type 9295B1

^{*} only for 9295B1

Optional Accessories

- Connection cable, 8-core with flexible stainless steel hose, straight plug
- Connection cable, 8-core with flexible stainless steel hose, 90° plug
- Extension cable
- Multichannel charge amplifier ±600 ... 600 000 pC

Type/Art. No. 1677A5/Asp

1679A5/Asp

1678A5/ A10/Asp 5070A...1.

Additional Kistler Products

• RoaDyn S220 measuring hub for rolling resistance measurement of car tires on tire test stands

Measuring hub RoaDyn P530, oil-lubricated

• RoaDyn S260 measuring hub for rolling resistance measurement of truck tires on tire test stands

• RoaDyn S5ST (60 kN) measuring hub for measurement of truck tires on tire test stands

• RoaDyn S5MT (100 kN) measuring hub for measurement of truck tires on tire test stands

for this Application Type/Art. No. 9289A103

9289A113

9289A253

9289A263

Page 6/6

RoaDyn® S5ST Measuring Hub

Type 9289A253

for Durability and Tire Characteristics Measurements on Tire Test Stands (Commercial Vehicles)

The 5(6)-component RoaDyn S5ST measuring hub is ideally suited to measure durability and tire characteristics of commercial vehicles on tire test stands. It measures the longitudinal, transverse and vertical forces F_x , F_y and F_z and the corresponding moments M_x , $M_y^{2)}$ and M_z acting at the tire contact area.

- High precision tire characteristics measurements with commercial vehicle tires
- Best suited for rim sizes >16" (smaller rims with appropriate adapter possible)
- Strain gage load cell technology for static and dynamic tire measurements
- Static measurement of vertical force F_z enables tire test stand controlling (no additional force sensors necessary)
- Modular design
- · High rigidity
- · Factory calibrated
- · Prepared for oil lubrication

The RoaDyn S5ST measuring hub is a robust, high-precision measuring tool, equipped with four oval strain gage load cells which are mounted between base and top plate. The measuring hub is stationary, i.e. base plate, top plate and load cells are mounted non-rotating at the tire test stand. The measuring hub incorporates a rotary axis (shaft) with predefined hub hole patterns on which the test tire/rim combinations are mounted. This setup guarantees optimum power flow with minimum cross talk between the individual force components and a high natural frequency of the complete measuring system. The shaft end is lead through the back side of the measuring hub and is prepared for installation of a driving or braking device. The inlet and outlet ports for the oil circuit on the back of the measuring hub are intended for lubricating and cooling of the bearings in order to achieve constant heat conditions even with large loads and increased rotational speeds.

Application

Typical areas of use are measurements of tire characteristics on tire test stands in the laboratory as well as on mobile test vehicles in the fields of durability, non-uniformities, vibrations, braking characteristics, adhesion etc.

Technical Data

General Technical Data

General recilinear Data			
Measuring range 1)	F _x	kN	-60 60
	Fy	kN	-40 40
	Fz	kN	0 60
	M _x	kN∙m	-29 29
	$M_y^{2)}$	kN∙m	-15 15
	Mz	kN∙m	-9 9
Calibration range 3)	F _x	kN	0 60
	Fy	kN	0 40
	Fz	kN	0 60
Linearity	F _x , F _z , F _y	%FSO	≤±0,5
Crosstalk 4)	$F_y \rightarrow F_x$, F_z	%	≤±1,0
	$F_x \leftarrow F_z$	%	≤±1,0
	F_x , $F_z \rightarrow F_y$	%	≤±1,0
Natural frequency	f _n (x, y, z)	Hz	≈800
Maximum rotational speed		min ⁻¹	1 850
Operating temperature range		°C	+5 70
Degree of protection (DIN40050)			IP65
·			

Technical Data (Continuation)

_				
n	im	en	Cia	nnc

Diameter	mm	445
Length	mm	530
Weight	kg	196
Standard pitch circles		_
10 pcs. M16x22	Ø	195
12 pcs. M16x22	Ø	160
5 pcs. M14x1,5x35	Ø	112

Requirements for Oil Lubrication

Feed pipe, 1 x		п	1/2
Oil pressure 3), feed pipe	р	bar	≤0,5
Flow rate	◊	l/min	1 2
Return pipe, 1 x		п	3/4
Oil pressure, return pipe	р	bar	pressureless
Oil specification	Туре	ISO VG	68
Kinematical viscosity (@40°)	n	mm²/s	65 75
Pump type ⁵⁾			non-pulsating

- $^{\mbox{\scriptsize 1)}}$ It is assumed that the extreme values do not occur simultaneously
- $^{2)}$ My can only be measured when a brake is installed at the test stand, otherwise My = 0
- $^{3)}$ Standard force application point at tire radius R = 500 mm and press-in depth e = 0 mm
- 4) In combination with signal post-processing in customer's data acquisition and Kistler supplied algorithm
- ⁵⁾ e.g. gear-wheel pump

Dimensions

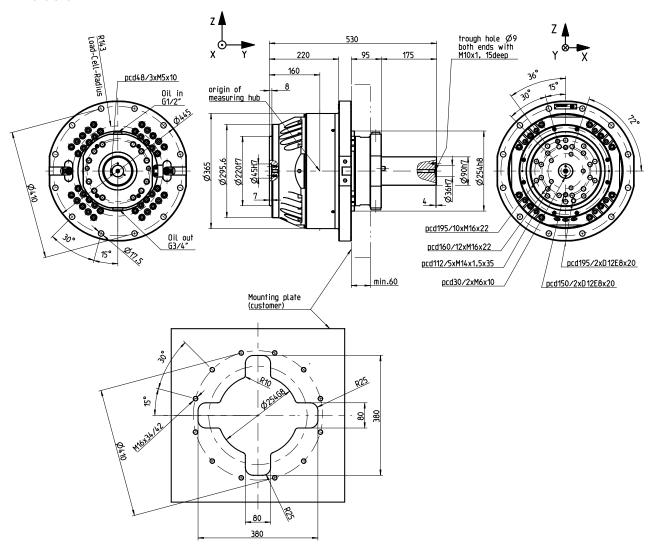


Fig. 1: Assembly drawing RoaDyn® S5ST

Page 2/3

Measuring Chain

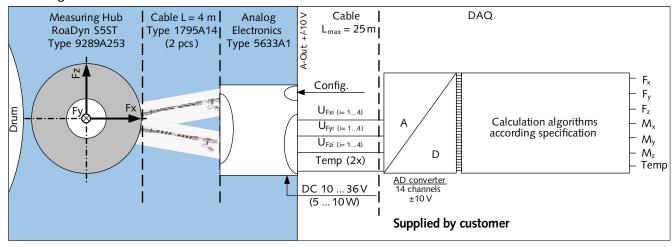


Fig. 2: Analog measuring chain RoaDyn® S5ST

Mounting

The RoaDyn S5ST measuring hub is mounted on the standard pitch circle ø410 mm on the tire test stand using twelve M16 bolts. The rim/tire combinations are mounted either directly onto the shaft flange with predefined pitch circle diameters or with an adapter flange. Rim centering is done with a customized centering pin (not included in the scope of delivery).

Included Accessories12 pcs. cylinder head screw with hexagon socket M16x60	Type/Art. No. 65017330
• 12 pcs. washer D25/M16x3	65017328
• 1 pcs. eye bolt	6.170.008
• 2 pcs. allen set screw M16x80	6.160.108
Optional Accessories • Connecting cable measuring hub length = 4 m, straight connector (2 pcs. required)	Type/Art. No. 1795A14
 Connecting cable measuring hub length = 4 m, angle connector (2 pcs. required) 	1795A24
Analog electronics for tire test stands	5633A1

Supplied by Customer

• Triaxial accelerometer ±5 g

• Hydraulic oil pump lubrication system (non-pulsating)

8762A5

• DAQ

Ordering Code	Type
 RoaDyn S5ST measuring hub 	9289A253
for durability and tire characteristics	

Other Kistler Products for this Application

measurements on tire test stands

(commercial vehicles)

- RoaDyn S220 measuring hub (20 kN)
 9289A103
 to measure tire rolling resistance of passenger car tires on tire test stands
- RoaDyn S260 measuring hub (60 kN)
 9289A113
 to measure tire rolling resistance of truck tires on tire test stands
- RoaDyn P530 measuring hub (30 kN) to measure tire characteristics on tire test stands (passenger car)
- RoaDyn S5MT measuring hub (100 kN) 9289A263 for durability and tire characteristics measurement on tire test stand (truck)

9295B...

RoaDyn® S5MT Measuring Hub

Type 9289A263

for Durability and Tire Characteristics Measurements on Tire Test Stands (Truck and Bus)

The 5(6)-component RoaDyn S5MT measuring hub is ideally suited to measure durability and tire characteristics of trucks and busses on tire test stands. It measures the longitudinal, transverse and vertical forces F_x , F_y and F_z and the corresponding moments M_x , $M_y^{\,2)}$ and M_z acting at the tire contact area.

- High precision tire characteristics measurements for commercial vehicle tires
- Best suited for rim sizes >17,5" (smaller rims with appropriate adapter possible)
- Strain gage load cell technology for static and dynamic tire measurements
- Static measurement of vertical force F_z enables tire test stand controlling (no additional force sensors necessary)
- Modular design
- · High rigidity
- Factory calibrated
- Prepared for oil lubrication

The RoaDyn S5MT measuring hub is a robust, high-precision measuring tool, equipped with four oval strain gage load cells which are mounted between base and top plate. The measuring hub is stationary, i.e. base plate, top plate and load cells are mounted non-rotating at the tire test stand. The measuring hub incorporates a rotary axis (shaft) with predefined hub hole patterns on which the test tire/rim combinations are mounted. This setup guarantees optimum power flow with minimum cross talk between the individual force components and a high natural frequency of the complete measuring system. The shaft end is lead through the back side of the measuring hub and is prepared for installation of a driving or braking device. The inlet and outlet ports for the oil circuit on the back of the measuring hub are intended for lubricating and cooling of the bearings in order to achieve constant heat conditions even with large loads and increased rotational speeds.

Application

Typical areas of use are measurements of tire characteristics on tire test stands in the laboratory as well as on mobile test vehicles in the fields of durability, non-uniformities, vibrations, braking characteristics, adhesion etc.

Technical Data

General Technical Data

Measuring range 1)	F _x	kN	-100 100
	Fy	kN	<i>-</i> 50 50
	Fz	kN	0 100
	M _x	kN∙m	- 40 40
	$M_y^{2)}$	kN∙m	-30 30
	Mz	kN∙m	- 15 15
Calibration range 3)	F _x	kN	0 100
	Fy	kN	0 50
	Fz	kN	0 100
Linearity	F _x , F _z , F _y	%FSO	≤±0,5
Crosstalk 4)	$F_y \rightarrow F_x$, F_z	%	≤±1,0
	$F_x \leftarrow > F_z$	%	≤±1,0
	F_x , $F_z \rightarrow F_y$	%	≤±1,0
Natural frequency	f _n (x, y, z)	Hz	≈700
Maximum rotational speed		min ⁻¹	1 000
Operating temperature range		°C	+5 70
Degree of protection (DIN40050)			IP65

Technical Data (Continuation)

Dimensions

Diameter	mm	480
Length	mm	630
Weight	kg	245
Standard pitch circles		
22 pcs. M16x22	Ø	205
16 pcs. M16x22	Ø	150
5 pcs. M14x1,5x35	Ø	112

Requirements for Oil Lubrication

Feed pipe, 1 x		ıı	5/8
Oil pressure 3), feed pipe	р	bar	≤0,5
Flow rate	•	l/min	1 2
Return pipe, 1 x		ıı	1
Oil pressure, return pipe	р	bar	pressureless
Oil specification	Туре	ISO VG	68
Kinematical viscosity (@40°)	n	mm²/s	65 75
Pump type ⁵⁾			non-pulsating
`			

- 1) It is assumed that the extreme values do not occur simultaneously
- $^{2)}$ My can only be measured when a brake is installed at the test stand, otherwise My = 0
- $^{3)}$ Standard force application point at tire radius R = 500 mm and press-in depth e = 0 mm
- 4) In combination with signal post-processing in customer's data acquisition and Kistler supplied algorithm
- e.g. gear-wheel pump

Dimensions

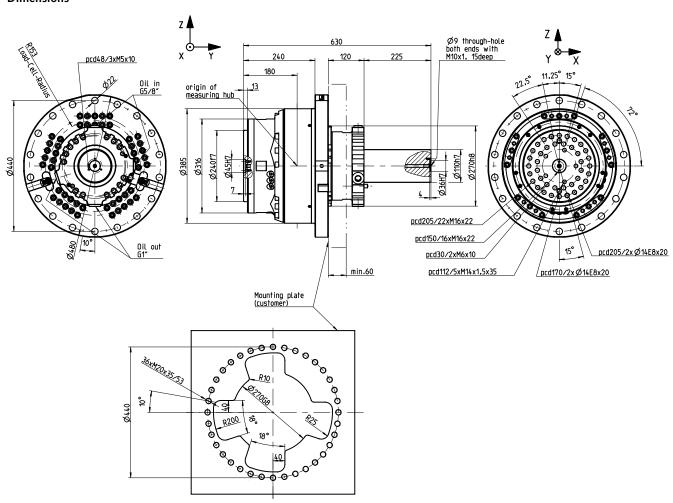


Fig. 1: Assembly drawing RoaDyn® S5MT

Measuring Chain

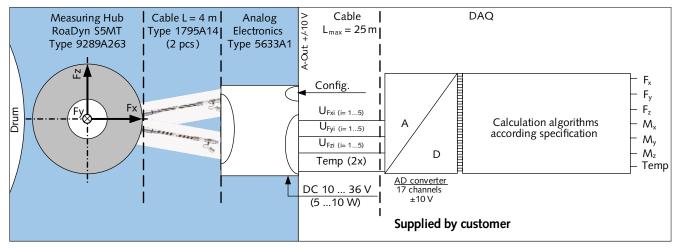


Fig. 2: Analog measuring chain RoaDyn® S5MT

Mounting

The RoaDyn S5MT measuring hub is mounted on the standard pitch circle ø440 mm on the tire test stand using eighteen M20 bolts. The rim/tire combinations are mounted either directly onto the shaft flange with predefined pitch circle diameters or with an adapter flange. Rim centering is done with a customized centering pin (not included in the scope of delivery).

Included Accessories	Type/Art. No
• 18 pcs. cylinder head screw with	6.120.287
hexagon socket M20x80/53	
• 18 pcs. washer D37/M20x8	6.220.074
• 1 pcs. eye bolt	6.170.008
• 2 pcs. allen set screw	6.160.087
M20x50	
• 1 pcs. lifting tool 292x192x60 mm	3.710.229
• 2 pcs. cylinder head screw with	6.120.225
hexagon socket M16x30	
• 1 pcs. cylinder head screw with	6.120.217
hexagon socket M12x30	

Optional Accessories

Type/Art. No.

 Connecting cable measuring hub, I = 4 m 	1795A14
straight connector (2 pcs. required)	

 Connecting cable measuring hub, I = 4 m 1795A24 angle connector (2 pcs. required)

Analog electronics for tire test stands
 Triaxial accelerometer ±5 g
 8762A5

Supplied by Customer

- Hydraulic oil pump lubrication system (non-pulsating)
- DAQ

Ordering Code

Type 9289A263

 RoaDyn S5MT measuring hub for durability and tire characteristics measurements on tire test stands (truck and bus)

Other Kistler Products for this Application

for tire characteristics measurement on tire test stands (commercial vehicles)

•	RoaDyn S220 measuring hub (20 kN)	9289A103
	to measure tire rolling resistance of	
	passenger car tires on tire test stands	
•	RoaDyn S260 measuring hub (60 kN)	9289A113
	to measure tire rolling resistance of	
	truck tires on tire test stands	
•	RoaDyn P530 measuring hub (30 kN)	9295B
	to measure tire characteristics on	
	tire test stands (passenger car)	
•	RoaDyn S5ST measuring hub (60 kN)	9289A253